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ABSTRACT

The predictable patterns and intraensemble variability ofmonthly 850-hPa zonal wind over the tropical Indo-Pacific region

are investigated using 7-month hindcasts for 1983–2009 from Project Minerva. When applied to the ensemble hindcasts

initialized on 1 May and 1 November, a maximum signal-to-noise empirical orthogonal function analysis identifies the

patterns of high predictability as the hindcasts progress. For both initial months, the most predictable patterns are associated

with El Niño–Southern Oscillation (ENSO). The second predictable patterns with May initialization reflect the anomalous

evolution of the western North Pacific (WNP) monsoon, characterized by a northward shift of the WNP anomalous anti-

cyclone/cyclone in summer and a southward shift in fall. The intraensemble variability shows a strong seasonality that affects

different predictable patterns in different seasons. ForMay initialization, the dominant patterns of the ensemble spread bear

some resemblance to the predictable WNP patterns in summer and ENSO patterns in fall, which reflect the noise-induced

differences in the evolution of the predictable signals among ensemble members. On the other hand, the noise patterns with

November initialization are dominated by the northern extratropical atmospheric perturbations from winter to early spring,

which expand southward through the coupled footprinting mechanism to perturb the ENSO evolution in different ensemble

members. In comparison, the extratropical perturbations in the Southern Hemisphere, most significant in early months with

May-initialized predictions, are less effective in affecting the tropical circulation.

1. Introduction

The tropical Indo-Pacific region is characterized by

complex geography, active atmosphere–ocean interaction,

and major climate variation (Ramage 1968; Rasmusson

and Carpenter 1983; Lau and Nath 1996; Torrence and

Webster 1998; C.-P. Chang et al. 2000; Lau et al. 2000;

Wang et al. 2000; Wang and Zhang 2002; Xie et al. 2002).

Over this region, El Niño–Southern Oscillation (ENSO)

is the dominantmode of interannual variability with large

global influences, leading to significant environmental

and socioeconomic consequences (Trenberth et al. 1998;

McPhaden et al. 2006). Generally, ENSO events follow a

similar life cycle, which develops during the boreal sum-

mer and fall, peaks in the boreal winter, and decays in the

following spring (Philander et al. 1983; Hirst 1986; Jin
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et al. 1994; Tziperman et al. 1994). The western North

Pacific (WNP) anticyclonic (WNP-AC) anomaly, which

is another major feature of the climate system in the re-

gion, begins to develop at the ENSO mature phase and

persists to the following summer (Wang et al. 2000, 2003;

Wang and Zhang 2002). This WNP-AC displays a

northward shift from winter to the following summer

(Xie et al. 2009). Three mechanisms have been proposed

for the development and maintenance of the WNP-AC:

a convectively coupled atmospheric Rossby wave re-

sponse to suppressed convective heating (Wang et al.

2000); the ‘‘combination mode’’ of ENSO and the annual

cycle (Stuecker et al. 2013, 2015); and the heat capacitor

effect of the delayed tropical Indian Ocean (IO) warm-

ing, which forces atmospheric Kelvin waves into the

WNP and induces northeasterly surface wind anomalies,

resulting in regional divergence that generates the WNP-

AC (Xie et al. 2009). An interbasin feedback with the

northern IO may also prolong the WNP anomalies into

the post–El Niño summer (Xie et al. 2016). Through this

anomalous anticyclonic surface circulation or the Pacific–

Japan (PJ) pattern (anomalous convective activity over

the tropical northwestern Pacific and a meridional dipole

of anomalous circulation in the lower troposphere; refer

to Nitta 1987), ENSO further affects the climate over

East Asia, including the East Asian summer monsoon

(Wang et al. 2000; Kosaka et al. 2013). Besides theWNP-

AC, the Indian Ocean dipole (IOD) and the Indian

Ocean basinwide warming, which are the leading modes

of climate variation in the tropical IO, are also closely

associated with ENSO (e.g., Rasmusson and Carpenter

1982; Saji et al. 1999; Webster et al. 1999). Obviously, the

large-scale atmospheric circulation plays a major role in

variation and interaction of the climate systems over the

tropical Indo-Pacific region; it can also transfer these

impacts to the extratropical region (Wang et al. 2000; Cai

et al. 2011; Jia et al. 2014; Sun and Zhou 2014).

Many studies have investigated the prediction and

predictability of climate variations within the tropical

Indo-Pacific region because of their widespread impacts

on the global scale (Lin et al. 2008; Jiang et al. 2013; Zhu

et al. 2015a,b; Zhang et al. 2016a,b). As amajor source of

predictability, ENSO is generally well predicted in dy-

namic models, but there is pronounced seasonal varia-

tion in prediction skill (e.g., Zebiak and Cane 1987;

Battisti 1988; Balmaseda et al. 1995; Webster and Yang

1992; Luo et al. 2008). Common to most of the models,

the prediction skill of ENSO decreases rapidly during

the boreal spring (the so-called spring predictability

barrier), and then sometimes rebounds in the following

fall and winter (e.g., Zebiak and Cane 1987; Blumenthal

1991; Webster and Yang 1992). During the summer of

the ENSO decaying year, the last echoes of ENSO are

confined to the Indo-WNP region, and the coupled

PJ–IO mode [an interaction between IO sea surface

temperature (SST) and the PJ pattern] provides seasonal

predictability to the region (Xie et al. 2009; Chowdary

et al. 2011; Kosaka et al. 2013).

Major improvements in model skill have been made in

predicting climate variations over the tropical Indo-Pacific

region during the past decades. However, the quality of

seasonal predictions in this region is still far from satis-

factory. Seasonal prediction errors can be generated by

model systematic error, initial state error, and noise-

driven error (Karspeck et al. 2006; Jia et al. 2012). While

the model and initial state errors can potentially be re-

duced through model improvement and better observa-

tions, the noise-driven error is inherent to the dynamic

system and limits its intrinsic predictability. For an en-

semble seasonal prediction, the intraensemble spread

characterizes both initial state inaccuracy and noise-

driven error, which measures the reliability of the en-

semble forecast (van der Linden and Mitchell 2009;

Kirtman et al. 2014; Ma et al. 2017a,b). Understanding

the mechanisms that determine the growth of intra-

ensemble spread can provide insights into how these er-

ror sources are generated and how they may affect the

predictable signals. For instance, Kosaka et al. (2013)

indicated that the PJ–IO pattern emerges as the leading

mode in both multimodel ensemble mean (signal) and

intraensemble variability (noise) for the summer Indo-

WNP region. This implies that the growth of the noise-

driven error follows the same dynamics that governs

the predictable signals. In this case, noise can cause the

evolution of its counterpart predictable signal to differ

among ensemble members and limit the predictability.

By analyzing the intraensemble variability of seasonal

hindcasts, Ma et al. (2017a) also found a strong coupling

of the northern IO SST and the WNP-AC. Furthermore,

ENSO may be stochastically forced by either processes

that are partially ENSO state dependent (Kug et al.

2008), such as the Madden–Julian oscillation (MJO), or,

to a lesser extent, the westerly wind bursts (WWBs;

Lopez and Kirtman 2014), or intrinsic atmospheric vari-

ability that is not ENSO related. An example of the

latter is the midlatitude atmospheric perturbations in the

boreal winter and spring, which may expand equator-

ward and trigger an ENSO-like pattern via a seasonal

footprinting mechanism (SFM; Vimont et al. 2001). Larson

and Kirtman (2015, 2017) showed that the ENSO-

independent equatorial wind develops via the ENSO-like

feedback mechanism. In particular, stochastic wind per-

turbation on the equator in March is an important con-

tributor to the spring predictability barrier (Penland

and Sardeshmukh 1995; Penland 1996). It is clear that

both types of random perturbations contribute to the
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uncertainty of ENSO prediction (e.g., Penland and

Sardeshmukh 1995; Penland 1996; Vimont et al. 2001;

Zhang and Gottshalck 2002; Vimont et al. 2003; Hendon

et al. 2007). Overall, understanding prediction uncer-

tainty and its associated mechanism is vital to the

improvement of model prediction skill and to the de-

termination of the ultimate limit of such predictability.

In a recent study, Zhang et al. (2018) examined the

predictive skill and predictable patterns of the 850-hPa

zonal wind over the Indo-Pacific region, using the Na-

tional Centers for Environmental Prediction (NCEP)

Climate Forecast System, version 2 (CFSv2), reforecast

dataset. They found that the most predictable patterns

are associated with ENSO developing and maturing

phases, which are predictable at multiseason lead

(Zhang et al. 2018). The second most predictable pat-

terns are more seasonally dependent, including the

ENSO decaying phase during winter and spring and the

WNP monsoon and IOD in summer and fall, re-

spectively (Zhang et al. 2018). Our study verifies and

extends their results using the hindcast dataset from

another major seasonal forecast system. We focus on

tracking predictable physical processes that evolve with

season and lead time as well as the intraensemble vari-

ability of atmospheric low-level circulation over the

tropical Indo-Pacific domain, which has not been fully

understood heretofore.We also analyze the evolution of

the predictable patterns with lead time and season.

Furthermore, we examine the spatial–temporal struc-

ture of the intraensemble variability and how the en-

semble spread may influence the predictable signals.

This paper is arranged as follows: In section 2, we de-

scribe the hindcast and observational data and the

analysis method. In section 3, predictive skill of 850-hPa

zonal wind over the tropical Indo-Pacific domain is

evaluated. In section 4, we analyze the seasonal evolution

of the predictable ENSO patterns and WNP monsoon

patterns. Intraensemble variability of the atmospheric

low-level circulation over the tropical Indo-Pacific region

and its associated mechanism are presented in section 5.

Finally, a summary of the study and further discussion are

included in section 6.

2. Model, data, and methods

ProjectMinerva is a collaborative project between the

Center for Ocean–Land–Atmosphere Studies (COLA)

and the European Centre for Medium-Range Weather

Forecasts (ECMWF). It is an extension of Project

Athena, a collaboration of weather–climate modelers

and high-end computing experts from five international

institutions, including the ECMWF and COLA, to

test whether representing mesoscale and subsynoptic

processes in atmospheric general circulation models

(AGCMs) can improve climate simulations (Kinter

et al. 2013). Applying this concept to seasonal fore-

casting, Project Minerva employs a state-of-the-art cou-

pled operational long-range prediction system based

on the ECMWF Seasonal Forecast System 4 (System

4; Molteni et al. 2011). The ocean component is the

Nucleus for EuropeanModelling of the Ocean (NEMO;

Madec 2008), version 3.0. Its discretization is on the

ORCA1 grid, with a horizontal resolution of about

18 (with equatorial refinement of 1/38) and 42 vertical

levels. For the atmospheric component, the ECMWF

Integrated Forecast System (IFS) cycle 38r1 was applied

with three different horizontal resolutions at T319, T639,

and T1279, which correspond approximately to 62-, 31-,

and 16-km grid spacing, respectively. The ocean and at-

mosphere are coupled every 3h. The configurations for

Project Minerva depicted above are similar to the oper-

ational ECMWFSystem 4, except for higher atmospheric

resolutions.

The initial states of the ensemble hindcasts are from

the initial conditions used for the operational ECMWF

IFS system (Molteni et al. 2011). Specifically, the un-

perturbed atmospheric initial conditions are from the

ERA-Interim generated by the ECMWF atmospheric

data assimilation system (Dee et al. 2011). The land

surface initial conditions derived as the output of an

offline run of the Hydrology Tiled ECMWF Scheme

of Surface Exchanges over Land (HTESSEL) forcing

by the ERA-Interim data (e.g., precipitation, solar ra-

diation, near-surface temperature, winds, and humid-

ity; Molteni et al. 2011). The ocean initial conditions

are from the Ocean Reanalysis System 4 (ORA-S4;

Balmaseda et al. 2013), which has five ensemble mem-

bers generated by an ocean data assimilation system.

To generate the ensemble members, the five members

of the ORA-S4 analyses are further perturbed by ap-

plying SST perturbations with associated subsurface

projections. The atmospheric initial conditions are also

perturbed using the operational Ensemble Prediction

System (EPS) to calculate singular vectors (Molteni

et al. 2011). The first 15 perturbed members are used

as initial states for this set of hindcast runs. More de-

tails about the prediction system, including its initializa-

tion and ensemble generation, can be found in Molteni

et al. (2011). The Minerva experimental design was fur-

ther described in Zhu et al. (2015b) and Manganello

et al. (2016).

Our analysis focuses on the 7-month hindcasts ini-

tialized on 1 May and 1 November during 1983–2009,

consisting of 15 members for the T639 configuration. A

previous study by Zhu et al. (2015b) demonstrated that

the effect of atmospheric model component resolution
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on the tropical SST prediction skill is relatively small.

Our preliminary analysis of the tropical low-level winds

is largely consistent with their result. Therefore, we

mainly use the T639 outputs to demonstrate our results

in this paper, but we will comment on potential effects

of model resolution on certain aspects in the final section

of the paper. For convenience, hindcast ensembles of

0-month lead, 1-month lead, . . . , and 7-month lead are

denoted as LM0, LM1, . . . , and LM7, respectively. For

observational verification, the monthly analyses of SST

from the National Oceanic and Atmospheric Adminis-

tration optimally interpolated SST analysis (Reynolds

et al. 2007), sea level pressure (SLP) and 850-hPa wind

from the NCEP Climate Forecast System Reanalysis

(Saha et al. 2010), and precipitation from the Climate

Prediction Center (CPC) Merged Analysis of Pre-

cipitation (CMAP; Xie and Arkin 1997) are used in

this study.

To identify the most predictable patterns of 850-hPa

zonal wind over the Indo-Pacific region, the empirical

orthogonal function (EOF) analysis with maximized

signal-to-noise ratio (MSN) is applied. TheMSNEOF is

an effective statistical technique to extract the predict-

able signals from an ensemble of hindcasts and maxi-

mizes the signal-to-noise ratio in a moderate ensemble

size (Allen and Smith 1997; Venzke et al. 1999; P. Chang

et al. 2000; Sutton et al. 2000; Huang 2004). In general,

for an ensemble simulation, its ensemble mean is com-

posed of signals and the residual of internal noise, the

latter of which approaches zero when the ensemble size

approaches infinity. Correspondingly, the ensemble

mean covariance matrix CM can be decomposed into a

signalCS and a residual noiseCR covariance matrix, that

is,CM5CS1CR. AlthoughCR is inversely proportional

to the ensemble size, it is nonnegligible if the ensemble

size is small or moderate, as is the case for most en-

semble simulations. Therefore, the conventional EOF

modes of the ensemble means (i.e., the eigenvectors of

CM) can be seriously contaminated by the noise. The

goal of the MSN EOF analysis is to derive the dominant

patterns corresponding to CS in the presence of CR. Its

key step is to perform a ‘‘prewhitening’’ transformation

with an operator F so that FTCMF 5 FTCSF 1 FTCRF,

where FT is the transpose of F and FTCRF is an identity

matrix. After this transformation, the first eigenvector of

FTCMF maximizes the ratio of the variances of the en-

semble mean and within-ensemble deviations and so on.

In practice, the prewhitening operator F can be esti-

mated from the first K-weighted EOF patterns of the

intraensemble deviations. A detailed procedure of the

MSN EOF analysis is given by Venzke et al. (1999).

Applied to the ensemble hindcasts, the leading MSN

EOF patterns can be explained as the predictable signals

from all ensemble members. On the other hand, the

leading modes of a conventional EOF analysis of the

intraensemble deviations can be used to characterize

the dominant patterns of the internal noise of the cou-

pled system. The MSN EOF approach has been used

effectively in identifying the predictable patterns from

ensemble hindcasts by Hu and Huang (2007), Liang

et al. (2009), Zuo et al. (2013), Zhu et al. (2015a), and

Zhang et al. (2018).

In this study, the MSN EOF analysis is applied to

ensembles of hindcasts at every lead month from initial

conditions (ICs) of bothMay and November to examine

the seasonal evolution of the predictable patterns and

evaluate the limit of predictability. We concentrate on

the first two MSN EOF modes because they are statis-

tically significant at the 95% level using the F test

(Huang 2004). As a part of the MSN EOF calculation,

the EOF modes of the intraensemble variation are also

derived (Venzke et al. 1999; Huang 2004). Taking ad-

vantage of this by-product, we use the first noise EOF

modes to examine the dominant structures of the in-

traensemble variation at different lead times of the

forecast and analyze their potential influences on the

corresponding predictable patterns.

In this study, several indices are used to represent

major physical processes in the Indo-Pacific region. The

ENSO variation is characterized by the SST anomalies

averaged over the areas of Niño-3, Niño-3.4, andNiño-4.
The WNP-AC index is defined as the SLP anomalies

averaged over 1208–1608E, 58–208N (Li et al. 2016). The

IOD index is defined as the anomalous SST difference

between the western equatorial IO (508–708E, 108S–108N)

and the eastern equatorial IO (908–1108E, 108S–08) as
in Saji et al. (1999).

3. Prediction skill and predictability

In this section, we evaluate predictive skill of 850-hPa

zonal wind over the tropical Indo-Pacific domain in

Project Minerva with both May and November ICs.

Figure 1 shows correlation skill for 850-hPa zonal wind

in Minerva T639 with ICs in May and November for

different lead months. Initialized in May, high correla-

tion coefficients (.0.6) are mainly located over the

western Pacific warm pool (WP) region in target months

of summer (Figs. 1a,b). The regions of significant skill

are centered over the IO as well as the central-to-eastern

equatorial Pacific in fall (Fig. 1c). Initialized in No-

vember, high correlations are located in the equatorial

Pacific from fall to spring (Figs. 1c–f). Moreover, the

skill is high over the IO in December (Fig. 1d) and re-

bounds in April (Fig. 1f). The model also shows skill in

the western Pacific during winter (Fig. 1e). Overall,
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skillful regions migrate seasonally and are concentrated

in the tropical Indo-Pacific Ocean.

To analyze the comprehensive prediction skill of the

850-hPa zonal wind associated with the major modes

of variability in the tropical Indo-Pacific domain, the

correlation coefficients and root-mean-square error

(RMSE) of area-averaged indices over three high-skill

areas (Niño-3.4, WP, and IO regions; blue boxes in

FIG. 1. Correlations between observed 850-hPa zonal wind (m s21) and predicted 850-hPa zonal wind (m s21) in

T639 with ICs in (a)–(c)May and (d)–(f) November for different leadmonths. Values exceeding the 90% (0.32), 95%

(0.37), and 99% (0.48) confidence levels are shown. The blue boxes in (b), (c), and (d) denote the high correlation

areas of the WP, IO, and Niño-3.4 regions, respectively.
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Fig. 1) are calculated (Fig. 2). The correlation coeffi-

cients for the Niño-3.4 region (black curves, Fig. 2) are

significant in all lead months with both May and No-

vember ICs, but show a valley during target months of

summer, possibly attributed to the spring predictability

barrier (e.g., Webster and Yang 1992; Figs. 2a,b). The

correlation skill for theWP region, however, is generally

higher than the Niño-3.4U850 index during summer and

FIG. 2. (a),(b) Coefficients of correlation and (c),(d)RMSEbetween observation and ensemblemean hindcast with

(left) May ICs and (right) November ICs in different lead months for area-averaged 850-hPa zonal wind (m s21) of

the Niño-3.4 (black solid line), WP (red solid line), and IO regions (blue solid line). The dashed lines in (a) and

(b) denote the 95%confidence level. The black, red, and bluedashed lines in (c) and (d) denote the intraensemble spread

for the Niño-3.4, WP, and IO regions, respectively. The x coordinate indicates the corresponding lead months.
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fall, though decreasing faster during spring (Figs. 2a,b).

In comparison, the correlation skill of the IO region is

lower than the other two, but rebounds in October

(April) with May (November) ICs (Figs. 2a,b). The

RMSE, on the other hand, does not show large differ-

ences among the three regions (Figs. 2c,d). ForMay ICs,

the RMSE for both the Niño-3.4 and WP regions are

approximately 1.5 for all lead months (Fig. 2c). The

RMSE for the IO region is higher than the RMSEs for

the former two regions after 3-month lead (Fig. 2c). For

November ICs, the RMSE shows a rapid (slower) in-

crease from 0-month lead to 2-month (4 month) lead for

the Niño-3.4 (WP) region (Fig. 2d). The RMSE for the

IO region, however, does not show obvious increase

with the lead time (Fig. 2d). The intraensemble spread

for the WP and IO regions almost matches the RMSE

with May ICs, suggesting a reasonably decent reliability

(Figs. 2c,d; Johnson and Bowler 2009). However, the

ensemble spreads are generally larger than the RMSE

(over spread) withNovember ICs (Fig. 2d). On the other

hand, there are obviously smaller intraensemble spreads

for Niño-3.4 region with both ICs, contributing to under

dispersion for this region, suggesting that the model is

somehow overconfident in ENSO prediction, which is

quite common in the current forecast systems (Figs. 2c,d;

Zhu et al. 2013).

Going beyond the deterministic metrics, we examine

the signal-to-noise ratio of 850-hPa zonal wind pre-

dictions as a function of lead time (Fig. 3). Following

Rowell et al. (1995), the signal-to-noise ratio is defined

as the ratio between interannual standard deviation

of ensemble mean and the standard deviation of the

intraensemble variations, which measures the predict-

ability of the coupled system. The maximum signal-to-

noise ratio is mainly located over the equatorial Pacific,

with the center in the western Pacific during summer

and fall seasons, and it shifts eastward to the eastern-

central Pacific during winter and spring, demonstrating

a higher predictability of 850-hPa zonal wind over the

equatorial Pacific (Fig. 3). There are secondary maxi-

mum centers over the IO and WNP regions during

fall–winter and winter–summer, respectively (Fig. 3).

However, the ratio is generally smaller than 1.0 over these

two regions, except in target month of December, in-

dicating relatively lower predictability of 850-hPa zonal

wind over the IO and WNP regions.

4. Seasonal evolution of the predictable patterns

Studies have demonstrated that the major climato-

logical features over the Indo-Pacific region are well

predicted in the Minerva hindcasts (Zhu et al. 2015b;

Manganello et al. 2016). Although seasonal predictions

of ENSO and tropical cyclone activity in the Minerva

hindcasts have been evaluated, no investigation of the

predictable patterns of the atmospheric low-level cir-

culation, and their seasonal dependence, over the trop-

ical region in these hindcasts has been done so far and is

presented in this section.

a. Predictable ENSO patterns

In this subsection, we depict the predictable patterns

of 850-hPa zonal wind associated with ENSO using

the ICs in May and November. Figure 4 shows the first

MSN EOF modes (the most predictable patterns) of

850-hPa zonal wind over the Indo-Pacific region in

different lead months for T639 with ICs in May. The

spatial patterns ofMSNEOF1with different lead times

show similar features, characterized by anomalous

westerlies over the central-eastern equatorial Pacific

(Fig. 4, left). Although the westerly wind anomalies

are quite steady in different seasons/lead months, the

zonal wind anomalies over the IO show substantial

monthly variation. At LM0 (target month of May), the

anomalous easterlies are over the IO north of the

equator (08–158N; Fig. 4a). The center of easterly

loadings shifts to the equatorial IO, but is generally

weak during the target months in summer (Figs. 4c,e,g).

The equatorial easterlies strengthen during the fall

months in the IO as the equatorial westerly wind in the

central Pacific also peaks (Figs. 4i,k,m). It should be

noted that a particular phase (El Niño) is chosen to be

shown for theMSNEOF pattern but it could be equally

well applied to opposite phase (La Niña). These MSN

EOF patterns are apparently ENSO related because

their MSN first principal components (PC1s) show

large similarities among different lead months and with

almost the same peaks and valleys that correspond to

the El Niño and La Niña years (e.g., 1997 and 1999; Fig. 4,

right). The percentages of explained variance are above

36.2% for all leads.

To evaluate the prediction skill of these predictable

patterns identified by the MSN EOF, observations are

projected onto the first MSN EOF modes, and correla-

tions between the MSN PC1s and their corresponding

projected observational PC1s are calculated. These

correlation coefficients exceed the 99% confidence level

of the t test (0.48) for all leadmonths (see the values ofR

in Fig. 4, right), with a valley in the target months of

summer (LM1–LM3). Furthermore, each of the indi-

vidual ensemble members is projected onto the first

MSN EOF modes. The average correlation coefficients

between the MSN PC1s and the projected PC1s for

ensemble members exceed the 99% confidence level of

the t test for all leads and do not obviously decrease with

the increase in lead time except from LM0 to LM1 (see
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values of R1 in Fig. 4, right). The large percentage of

explained variance and statistically significant correla-

tions of MSN PC1s with the projected PC1s for obser-

vation and for ensemble members indicate the high

predictability of these patterns.

We further investigate the ocean–atmosphere anom-

alies that are associated with the most predictable pat-

terns of 850-hPa zonal wind. In Fig. 5, the correlation for

SLP and precipitation anomalies and the regression

patterns for 850-hPa wind and SST from LM0 to LM6

FIG. 3. Signal-to-noise ratio for 850-hPa zonal wind with (a)–(c) May ICs and (d)–(f) November ICs in different lead

months. The black box denotes the area for MSN EOF.
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FIG. 4. The first MSN EOF modes of 850-hPa zonal wind (m s21) in different lead

months for T639 with ICs in May. (left) The spatial patterns. (right) The solid black

lines are the PCs of ensemble means, and the solid red lines and dashed black lines

represent the PCs that are computed by projecting the 850-hPa zonal winds in ob-

servation and ensemble members upon the MSN EOF1, respectively. The R value

represents the correlation coefficient between the ensemble mean PC and projected

observational PC, and R1 represents the averaged correlation coefficient between

the ensemble mean PC and projected PCs for individual members.
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FIG. 5. Correlations of observed SLP and rainfall with ensemble mean PC1s and regression of

observed 850-hPa wind (m s21) and SST (K) against ensemblemean PC1s in different lead months

for T639 with ICs in May. The (left) patterns for SLP (shading) and 850-hPa wind (vectors), and

(right) patterns for SST (shading) and rainfall (contours). Only values exceeding the 90% confi-

dence level are shown.

8360 JOURNAL OF CL IMATE VOLUME 31

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 02/01/21 04:45 PM UTC



(i.e., target months of May–November) show the fea-

tures corresponding to seasonal evolution of ENSO

development. Note that the anomalous low-level wind

over the northern IO in the target month of May

demonstrates a weak or delayed onset of Asian mon-

soon as the El Niño event is initiated. However, this

ENSO–monsoon relationship is weakened as the pre-

dicted equatorial westerlies in the Pacific are extended

into the target months of summer (Figs. 5a,c,e,g). The

wind signals over the equatorial IO strengthen during

the target months of fall season as the ENSO signals

enhance in the Pacific (Figs. 5i,k,m). The SST and pre-

cipitation patterns in this season (Figs. 5l,n) show a

typical IOD structure (Saji et al. 1999), suggesting an

ENSO–IOD connection in this season (e.g., Huang

and Kinter 2002; Luo et al. 2010; Stuecker et al. 2017).

The close relationships between ENSO and the first

modes of MSN EOF for May ICs are also identified by

the significant correlations between observed (model)

ENSO indices and MSN PC1s, as shown in Fig. 6a

(figure not shown). A dip of the Niño-3 correlation in

summer (LM2–LM4) is consistent with Barnston et al.

(2012, their Fig. 1), which is generally considered as the

consequence of ENSO spring predictability barrier (e.g.,

Barnston et al. 2012; Tippett et al. 2012; Barnston and

Tippett 2013; Zhang et al. 2018). The high correlations

with the IOD index during LM4–LM6 (September–

November) can be seen in Fig. 6b. A high prediction

skill of the IOD in the ECMWF System 3 during

October–December is shown by Shi et al. (2012). The

MSN EOF2, to be discussed in detail in section 4, is not

significantly correlated with the contemporary ENSO

indices (Fig. 6c). Actually, there are large similarities

between correlations of the MSN PCs with the model

indices (figure not shown) and observed indices (Fig. 6),

indicating the PCs represent these phenomena correctly.

For November ICs with target months from late fall to

late spring, the most predictable patterns also show

ENSO features, which are well predicted by the model

for all leads (Figs. 7 and 8). Consistently, the MSN PC1s

are significantly correlated with ENSO indices, with

correlation coefficients above 0.8 in the first four months

of the hindcast (Fig. 6b). The reduction of correlation

afterward again signifies the spring barrier. The corre-

lations of theMSNPC1swith theWNP-AC/IOD indices

for May and November ICs show a phase locking of the

WNP-AC/IOD to the annual cycle of ENSO (Figs. 6b,f).

Beside the firstMSNEOFmodes, the secondMSNEOF

modes (the second most predictable patterns) with

November ICs are also closely linked to ENSO, but only

for the decaying phase of ENSO. Interestingly, the

monthly evolution of the second predictable patterns is

also ENSO related, characterized by a southward shift

of anomalous westerly wind, the so-called combination

mode that plays an important role in the termination of

strong El Niño event (Fig. 9; Stuecker et al. 2013, 2015).

Correspondingly, the MSN PC2s are significantly cor-

related with Niño-4 indices especially for the spring

months, but are insignificantly correlated with Niño-3
and Niño-3.4 indices (Fig. 6g), because of the decaying

of SST anomalies over the eastern equatorial Pacific

during the post-ENSO spring. These features depicted

above are consistent with those in Zhang et al. (2018),

indicating that the most predictable ENSO patterns are

not sensitive to the forecast system used.

b. Predictable WNP patterns

The second MSN EOF modes of 850-hPa zonal wind

in different lead months for T639 with May ICs are

shown in Fig. 10. The percentage values of variance

explained by theseMSNEOF2s are 20.2, 18.5, 21.0, 16.2,

12.9, 9.5, and 11.5 for LM0, LM1, LM2, LM3, LM4,

LM5, and LM6, respectively. The predictable signals are

mainly located over the WNP. At LM0, the easterly

wind anomalies are centered east of the Philippines

between the equator and 158N (Fig. 10a). This wind

band shows a northward shift in the target months of

summer from June (Fig. 10c) with its center reaching

158N in September (Fig. 10i); then, it shows a southward

shift in the target months of fall (Figs. 10k,m). There are

also some signals over the IO in the target months of

May and November (Fig. 10, left). To link the wind

patterns to regional climate variation, we calculate

correlations of the MSN PC2s with the WNP-AC and

IOD indices. The results show that these predictable

patterns are mainly associated with theWNP-AC rather

than the IOD in summer and fall months (Fig. 6d). The

second modes of MSN EOF are well predicted by the

hindcasts of ProjectMinerva with T639 resolution for all

leadmonths (see the values ofR in Fig. 10, right), though

the prediction skill is lower than those for the first MSN

EOFmodes. Unlike those for theMSN PC1s, the spread

among ensemble members increases rapidly from the

target months of late spring to fall (see values of R1 in

Fig. 10, right), suggesting lower predictability of the

second most predictable patterns.

Correlation and regression patterns for ensemble

mean PC2s of different lead months with May ICs are

shown in Fig. 11. In the target month of May, the asso-

ciated patterns show weak ENSO features, consistent

with the insignificant correlations between the MSN

PC2 and ENSO indices (Figs. 11a,b and 6c). An anom-

alous anticyclonic circulation appears over the WNP in

June, associated with positive SLP and negative SST

over the region, together with a decrease in rainfall east

of the Philippines and an increase in rainfall southeast of
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FIG. 6. Correlation coefficients between observed (a),(e) Niño-3/Niño-3.4/Niño-4 index and ensemble mean PC1;

(b),(f) WNP-AC/IOD index and ensemble mean PC1; (c),(g) Niño-3/Niño-3.4/Niño-4 index and ensemble mean

PC2; and (d),(h) WNP-AC/IOD index and ensemble mean PC2. The left (right) panels show the correlation co-

efficients for T639 with ICs in May (November). The x coordinate indicates the corresponding lead months. Hori-

zontal dotted lines denote the 95% confidence level.
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FIG. 7. As in Fig. 4, but for November ICs.
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FIG. 8. As in Fig. 5, but for November ICs.
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FIG. 9. As in Fig. 7, but for the second modes.
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FIG. 10. As in Fig. 4, but for the second MSN EOF modes.
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FIG. 11. As in Fig. 5, but for the ensemble mean PC2.
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Japan (WNPmonsoon features). ThisWNP-AC shows a

northward shift during the summer months and then

shifts southward in the fall months, associated with the

lifespan of the WNP monsoon (Fig. 11).

In addition, the hindcasts made using the T319 con-

figuration were examined to evaluate the resolution ef-

fect. Generally, the results in T319 hindcasts are similar

to those in T639 hindcasts (figure not shown). However,

the MSN PC2 in October with November ICs is signifi-

cantly (insignificantly) correlated with the WNP-AC

index and the IOD index in October for T319 (T639).

The correlation coefficients of the MSN PC2 with the

WNP-AC index and the IOD index in October for T319

are 0.44 and 0.40, respectively. These features suggest

that the effect of atmospheric horizontal resolution is

small, especially for the predictable ENSO patterns.

However, the atmospheric horizontal resolution may

have some influences on the predictable patterns during

the fall season when both theWNP-AC and the IOD are

well developed.

5. Intraensemble variability

Here, we examine the intraensemble variability of

850-hPa zonal wind within the tropical Indo-Pacific

region using Project Minerva hindcasts to identify the

most likely disrupters of seasonal predictions. The

first noise EOF modes for both May and November

ICs in T639 are analyzed. Interestingly, the leading

EOF modes of the intraensemble variability show co-

herent structures as a function of lead month, imply-

ing a month-to-month evolution of the intraensemble

spread driven by model dynamics. The evolution also

shows distinct characteristics during summer–fall and in

winter–spring.

a. Summer–fall evolution

Figure 12 shows the first EOF modes of model noise

data for 850-hPa zonal wind from the target months

from May to November with May ICs for T639. In late

spring, the large model spread is mainly located south of

158S to the east of Australia (Fig. 12a), which likely

originates from the southern extratropics. During the

boreal summer months, while the spread in the south

persists, the location of large model spread also appears

to the north of the equator. Its structure shows westerly

(easterly) wind anomalies from north of the equator to

about 158N extending from the IO to the WNP region,

with easterly (westerly) wind anomalies further to the

north (Figs. 12c,e,g). Their spatial structures are similar

to the spatial patterns of the second MSN EOF modes

(Figs. 10c,e,g). For the boreal fall months, the spatial

structures of first EOF modes of model noise data

(Figs. 12k,m) show zonal wind anomalies of opposite

signs between the equatorial Pacific and IO, which re-

semble the first predictable patterns in these months

(Figs. 4k,m). The noise PC1s are demonstrated on the

right-hand side of Fig. 12 as the projection of ensemble

members onto the noise EOFmodes (thin black curves).

The temporal variation of the noise level is represented

by the standard deviation of the ensemble members (red

curve), which shows weak interannual variation in late

spring and summer, but displays strong interannual

variation in the boreal fall months (red line in Fig. 12,

right). In particular, the results for the early to mid-

1990s and 2000s show relatively high noise level for

ENSO-like variability (Figs. 12l,n). It is interesting to

note that these were relatively weak but broad warm

episodes in the tropical Pacific (see Fig. 4, right, for

example).

To find the mechanisms associated with the intra-

ensemble variability for May ICs, we calculate cor-

relations of noise SLP and rainfall with noise PC1s and

regressions of 850-hPa wind and SST against noise

PC1s of different lead months for T639 (Fig. 13). The

patterns for May and June (Figs. 13a–d) are less or-

ganized than those in the later months. However, a

noticeable feature in May is strong negative SLP

anomalies with an anomalous cyclonic circulation south

of 208S to the east of Australia, which seems to have an

extratropical origin (Fig. 13a). This extratropical

perturbation persists in June and expands northward

mainly along the eastern boundary of the Pacific

(Fig. 13c), which is similar to the extension route de-

scribed in Huang and Shukla (2008), albeit for a differ-

ent season. On the other hand, another low SLP

anomaly with a cyclonic circulation appears in the WNP

region with its center near the Philippines around 208N
between 1208E and the date line in June. In July, the

WNP cyclone becomes more dominant than the south-

ern extratropical perturbations (Fig. 13e) and shows a

wave train similar to the PJ–IO pattern (e.g., Kosaka

et al. 2013), with upstream positive SLP anomalies ex-

panding from the IO into the Maritime Continent and a

downstream wave train through Japan. Interestingly,

this feature is associated with mild cold SST anomalies

extending from the northern IO to the WNP (Fig. 13f),

suggesting a connection to the IndianOceanBasinmode

(IOB). The precipitation is generally reduced under the

anticyclonic circulation over the IO but increased in the

cyclonic circulation over the WNP. As a result, pre-

cipitation is enhanced over cold SST anomalies in the

WNP. To substantiate the connection of the north-

western Pacific noise pattern with the rest of the basin,

we have calculated the EOF of noise SLP and correlated

the PCs of the leading modes with noise SST and SLP
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FIG. 12. The first EOF modes of model noise data for 850-hPa zonal wind (m s21) in

different lead months for T639 with ICs in May. (right) The dashed black lines rep-

resent the corresponding PCs for ensemble members, and the red line represents the

standard deviation of the ensemble members.
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FIG. 13. Correlations of noise SLP and rainfall with noise PC1s and regression of noise 850-hPa

wind (m s21) and SST (K) against noise PC1s in different lead months for T639 with ICs in May.

(left) The patterns for SLP (shading) and 850-hPa wind (vectors) and (right) the patterns for SST

(shading) and rainfall (contours). Only values exceeding the 95% confidence level are shown.
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(figures not shown). Both the PJ–IO pattern and IOB

appear in the correlation patterns, verifying the connection

between the WNP noise pattern and the IO region. By

August, the spatial structure is further consolidated into a

tropical mode dominated by an anomalous anticyclone

(high SLP) over the IO and a cyclone (low SLP) over

the WNP. This pattern implies a direct thermal cell con-

necting its uplifting branch over theWNPwith subsidence

over the eastern IO, as described in Huang and Shukla

(2007), which is sustained through September andOctober

(Figs. 13i,k). Our results are also consistent with the recent

findings by Ma et al. (2017a).

During the boreal fall months, the intraensemble

spread of 850-hPa zonal wind is also characterized by the

opposite wind anomalies in the equatorial Pacific and

the IO, which are mainly associated with the SST

anomalies over the central-eastern equatorial Pacific,

the Walker circulation (Figs. 13i–n). Huang and Shukla

(2007) suggested that the WNP-IO variation described

above can trigger the equatorial wind anomalies in the

central Pacific during the boreal fall season. Once gen-

erated, the equatorial wind anomalies seem to evolve via

the ENSO-like coupled dynamics (Larson and Kirtman

2015). These correlation and regression patterns are

similar to those for the first MSNEOFmodes during the

boreal fall season, suggesting that the prediction spread

over this region results mainly from the internal un-

certainty of the model. This is different from Larson and

Kirtman (2017), which stated that the uncertainty of

ENSO prediction is mainly from the equatorial wind

perturbations in March.

The resemblance in the spatial structures between the

predictable and noise patterns suggests that the noise

growth may be driven by the same dynamics as that for

the predictable signals and that such noise-induced

feedback generates the difference in the evolution of

the predictable signals among ensemble members

(Figs. 4, 10, and 12). To further clarify this issue, Fig. 14

shows composite differences in ensemble mean SST and

850-hPa wind between large positive (.1.0) and nega-

tive (,21.0) values ofMSN PC1 and composite of noise

SST and 850-hPa zonal wind magnitude for large posi-

tive values (.1.0) ofMSNPC1withMay ICs in different

leads. The noise magnitude is defined as the standard

deviation among the ensemble members. As expected,

there are large similarities between these composite

figures and correlation (regression) figures for ensemble

mean; both show ENSO developing features (Figs. 14, 4,

and 5, left). Large spread appears over the extratropical

Northern Hemisphere in all leads, consistent with the

leading noise EOF modes (Fig. 14, right). More impor-

tantly, with hindcasts initialized in May, the spread of

wind noise over the tropics is small in the target month

of June. A large spread first appears over the WNP in

August and then in the equatorial Indo-western Pacific,

as shown by the contour of 2m s21. This is largely con-

sistent with the noise EOF patterns in these months

(Figs. 12g,k). The corresponding SST magnitudes are

also similar to correlation (regression) figures for en-

semble spread (as shown in Figs. 13h,l). Composites for

the positive and negative ENSO events bear strong re-

semblance to Fig. 14 (figure not shown). Overall, these

composites are consistent with the noise patterns de-

picted with the EOF analysis, further demonstrating the

relationship between the predictable signals and noise,

that is, at relatively long leads, the noise distribution in

the tropics reflects the different growths of the predict-

able patterns due to the different amplification of the

initial differences. The reason for this geographic dis-

tribution is due to the coupled instability, through which

the initial differences generate lasting influences on the

predictable signal (e.g., Larson and Kirtman 2017).

b. Winter–spring evolution

Figure 15 shows the first noise EOF modes for No-

vember ICs. At LM0, the largest model spread is mainly

located over the extratropical Northern Hemisphere,

with westerly (easterly) wind anomalies north of 158N
and weaker easterly (westerly) wind anomalies farther

south (Fig. 15a). The westerly (easterly) wind anomalies

expand southward over the western Pacific in the next

two months (Figs. 15c,e,g), which trigger westerly

(easterly) wind anomalies over the central equatorial

Pacific and easterly wind anomalies over the equatorial

IO in February (Fig. 15g). During the boreal spring

season, the equatorial zonal wind anomalies are en-

hanced (Figs. 15i,k,m). It should be noted that the sign

does not matter for the spread EOFs; the spatial struc-

tures of these ensemble spreads tell their origins. The

time series and their standard deviations show that the

spread level is generally uniform throughout the period

(Fig. 15, right).

Figure 16 shows the correlations (regressions) of noise

SLP/rainfall (850-hPa wind/SST) with (against) noise

PC1s of different lead months for T639 with November

ICs. The most striking feature is the dipole SLP pattern

over the North Pacific from November to the following

March, which bears a strong resemblance to the North

Pacific Oscillation (NPO; Rogers 1981). There is a

strong anomalous cyclonic circulation over the south-

ern lobe of this dipole. The SLP anomalies first expand

southwestward inNovember andDecember (Figs. 16a,c).

Trade winds weaken throughout the subtropics when

low pressure occupies the southern lobe of the NPO, re-

ducing the upward surface latent heat flux (SLHF) and

thus warming the underlying ocean (Figs. 16a–d). The
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positive SST anomalies propagate toward the equator

through the wind–evaporation–SST (WES) feedback. By

early spring, warm SST anomalies reach the equatorial

Pacific and tend to grow through theENSO-like feedback

(Figs. 16h,j,l,n). This process is similar to the SFM for

ENSO triggering (Vimont et al. 2001, 2003). Again, the

sign of anomalies does not matter for these correlation

and regression patterns. In comparison to those for May

ICs, the northern extratropical perturbations affect the

tropical circulation more effectively than the southern

FIG. 14. Composite differences with May ICs in different months in (a)–(c) ensemble mean SST (shading) and

850-hPa wind (vectors) between peaks and valleys of MSN PC1, and (d)–(f) composite of noise SST (shading) and

850-hPa zonal wind magnitude (contours) for peaks of MSN PC1.
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FIG. 15. As in Fig. 12, but for ICs in November.
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FIG. 16. Correlations of noise SLP/SLHF with noise PC1s and regression of noise 850-hPa wind

(m s21)/SLHF (Wm22)/SST (K) against noise PC1s in of different lead months for T639 with ICs in

November. (left) The patterns for SLP (shading) and 850-hPa wind (vectors), and (right) the pat-

terns for SST (shading) and SLHF (contours). Only values exceeding the 95% confidence level

are shown.
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ones and may play a major role in prediction uncertainty

during the winter half of the year.

Similar features can also be seen from Fig. 17, which

shows composite differences in ensemble mean SST

and 850-hPa wind and the composite of noise SST and

850-hPa zonal wind magnitude for MSN PC1 with

November ICs. Composite figures for ensemble mean

mainly show features of ENSO maturing phase, con-

sistent with those for the most predictable patterns

in November ICs (Figs. 17 and 8). Similar to the noise

EOF patterns, the largest model spread is mainly lo-

cated over the extratropical Northern Hemisphere and

FIG. 17. As in Fig. 14, but for November ICs.
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then expands southward in the subsequent months

(Fig. 17, right). The spread of wind noise over the

equatorial Indo-Pacific region is enhanced in February

(Fig. 17e). Consistently, the large SST spread reaches

the equatorial Pacific in February and tends to grow

during the spring season (Figs. 17e,f). Similar features

appear in composite figures for the positive and negative

ENSO events (figures not shown).

6. Discussion and conclusions

In this study, we investigate the seasonal evolution of

the predictable patterns and the intraensemble vari-

ability of monthly 850-hPa zonal wind over the tropical

Indo-Pacific region using Project Minerva hindcasts.

The most predictable patterns are identified by applying

MSN EOF analysis. We also obtain the dominant

structures of the intraensemble variation at different

leads of forecast and study their associated mechanisms.

The most predictable patterns from both May and

November ICs are associated with ENSO and corre-

spond to the development of ENSO. These most pre-

dictable patterns are well predicted by the model for all

target months but with a relative minimum for the target

months in summer resulting from the spring pre-

dictability barrier. The common feature for these most

predictable patterns is the opposite sign loadings be-

tween the central-eastern equatorial Pacific and the

equatorial IO. The loadings over the equatorial IO,

however, weaken during the target months in summer

and then strengthen during the fall months in May ICs.

Correspondingly, the associated ocean–atmosphere

anomalies show that the early predictable ENSO sig-

nals in late spring are associated with a weak or delayed

onset of the Asian monsoon, and the relationship be-

tween ENSO and the monsoon is weakened as the

prediction is extended into summer months. This

weakened relationship may be responsible for the rela-

tively lower prediction skill for the target months in

summer. We find that the second most predictable pat-

terns from November ICs are also closely linked to

ENSO, but only for the ENSO decaying phase. The

MSN PC2s are significantly correlated with the Niño-4
indices especially in the spring months, but are in-

significantly correlated with the Niño-3 and Niño-3.4
indices because of the decaying SST anomalies over the

eastern equatorial Pacific during the post-ENSO spring.

These features depicted above are consistent with those

in Zhang et al. (2018), indicating that the most predict-

able ENSO patterns are not sensitive to the forecast

system resolution.

We find that the predictable signals in the second

MSN modes from May ICs are mainly located over the

WNP, which show a northward shift during the target

months in summer and a southward shift in the target

months in fall. Correspondingly, the associated ocean–

atmosphere anomalies from May ICs show a northward

shift of the WNP anomalous anticyclone/cyclone in the

summermonths, followed by a southward shift in the fall

months, associated with the lifespan of the WNP mon-

soon. These predictable WNP patterns are also well

predicted in Project Minerva hindcasts, but the pre-

diction skill is much lower than those for the predictable

ENSO patterns.

We also examine the intraensemble variability of

850-hPa zonal wind within the tropical Indo-Pacific region

in Project Minerva hindcasts to identify the most likely

disrupters of seasonal predictions. The intraensemble

spread includes both initial state errors and noise-driven

errors. Although it is difficult to distinguish errors gen-

erated by initial state or internal noise, since the latter is

generated by the former in the model, we still can get

some hints from this analysis. In fact, the noise distri-

butions reflect the uncertainty of the initial states at

short leads but are dominated by the model internal

noise in longer leads. Therefore, the evolution in the

patterns of the ensemble spread is influenced by the

model dynamics. For the hindcasts with May ICs,

the model spread is generated by the extratropical

perturbations from the Southern Hemisphere in late

spring. However, the location of large model spread

appears to the north of the equator during the target

months in summer, although the spread in the Southern

Hemisphere persists. During the fall months, the intra-

ensemble spread is characterized by the opposite wind

anomalies over the equatorial Pacific and the IO, which

are mainly associated with the SST anomalies in the

central-eastern equatorial Pacific, the Walker circula-

tion. The evolution of the intraensemble spread seems to

be driven by the same dynamics that are responsible for

the evolutions of predictable ENSO andWNP. Actually,

the spatial structures of the first EOF modes of model

noise data for the summer and fall months resemble

the second and first predictable patterns, respectively,

which reflects the noise-induced feedback difference

among ensemble members. On the other hand, the noise

patterns with November ICs are characterized by a

coupled southward expansion of the extratropical at-

mospheric perturbations in the Northern Hemisphere

from winter to early spring. The associated ocean–

atmosphere anomalies from winter to early spring are

similar to the process of SFM for ENSO triggering

(Vimont et al. 2001, 2003). In comparison, the Northern

Hemisphere extratropical perturbations affect the tropi-

cal circulation more effectively than the Southern

Hemisphere ones, consistent with Ma et al. (2017b).
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